
Gaussian processes.
Theory and applications in predictive

modeling of spatiotemporal phenomena

Martin Andreev Asenov

s1247380

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Report
Autonomous Systems Research

School of Informatics
University of Edinburgh

2016



1

Abstract
In this report we present a tutorial on Gaussian Processes. The report explains
the theory behind them, provide implementation details and conduct series of
experiments to give a further intuition of how they work. We touch on number of
more advance topics like connections with neural nets and hierarchical Gaussian
Processes. In the second part of the report we look into the problems of active
sensing and modeling spatiotemporal phenomena and why Gaussian Processes
are well suited for those tasks. Accompanying to the report the reader is also
encourage to check a presentation and code base, which can be found on https:

//github.com/masenov/GP_Intro

https://github.com/masenov/GP_Intro
https://github.com/masenov/GP_Intro
https://github.com/masenov/GP_Intro
https://github.com/masenov/GP_Intro
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Chapter 1

Introduction

Machine learning can be broadly divided into three different categories - super-
vised learning, unsupervised learning and reinforcement learning. Supervised
learning deals with the problem of trying to make a prediction based on input
information. Supervised learning can be further divided into classification and
regression. When we want to predict a finite number of types or classes we have
a classification problem. Examples of this include recognition of different cat-
egories of images and the language a text is written in. Regression deals with
the problem when the prediction we want to make is a continuous variable. For
example we can try to predict a certain stock price or a price of property in Lon-
don. Both of the problem involve coming up with non-linear, high dimensional
curve that we either fit through the data (regression) or draw decision boundary
(classification).

Unsupervised learning deals with unlabeled data. We try to infer structure of
the data we observe, identifying groups of similar examples. Methods include
clustering and density estimation. Finally there is reinforcement learning. Rein-
forcement learning deals with the problem of finding a suitable actions in different
situations in order to maximize a reward or achieve a goal.

In this report we will focus on solving regression problems using Gaussian Pro-
cesses. In the simplest form those problems can be defined in terms of the pairs

{xn, yn}Nn=1 (1.1)

where xn and yn are vectors. We try to predict yn based on xn. Through an
extension we can model classification problems similarly. Gaussian Processes are
also used in reinforcement learning. However the latter two topics are outside of
the scope of this report.

3



Chapter 1. Introduction 4

(a) (b)

Figure 1.1: Classification and regression. (a) In classification problems we
try to come up with a decision boundary to discriminate between different classes.
(b) In regression we try to fit a curve through our data.



Chapter 2

Gaussian distribution

2.1 Definition

Gaussian (or normal) distribution is probably the most used distribution, because
of it’s good properties as discussed later. The univariate Gaussian (having only
1 random variable) is defined in eq.2.1.

N(x|µ, σ2) =
1

(2πσ2)1/2
e−

(x−µ)2

2σ2 (2.1)

The univariate Gaussian has two hyperparameters the mean µ and standard
deviation σ. The Gaussian has a ”bell shape” curve as seen in fig.2.1. The effect
hyperparameters have on the shape of the distribution can be seen in fig.2.2.

Figure 2.1: Gaussian distribution.
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Figure 2.2: Effect on µ and σ on the Gaussian.

By changing µ we translate the distribution along the X axis and change the
most likely value of the distribution. On the other hand σ controls the shape
of the distribution - whether we have a tall and narrow bell shaped curve, or
wide and short. This specifies the range of values we get - when we have smaller
variance, we only get values close to the mean. As the variance increases we get
wider range of values around the mean. The univariate Gaussian distribution can
be extended to multivariate by defining as in eq.2.2.

N(x|µ,Σ) =
1

(2π)d/2|Σ|1/2
e−

1
2

(x−µ)TΣ−1(x−µ) (2.2)

Here, similarly to the univariate Gaussian, µ is a mean vector, and Σ is the
covariance matrix. The mean vector simply consists of the means of the different
dimensions of the distribution. The covariance matrix is defined as in eq.2.3.

Σij = cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)] (2.3)

An example 2D Gaussian can be seen in fig.2.3.
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Figure 2.3: 2D Gaussian distribution. We have defined µ =
[
0 0

]
and

Σ =

[
1 0
0 1

]

A more convenient way to visualize a 2D Gaussian can be by viewing it from
the top, referred as a contour plot. An example of the same Gaussian, but as a
contour plot can be seen in fig.2.4.

Figure 2.4: 2D Gaussian distribution, contour plot. Alternative visualiza-
tion of fig.2.3
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In order to get a better intuition of how the covariance matrix Σ and the mean
vector µ change the 2D normal distribution we can vary them and plot the
resulting contour plots. The mean again changes position of the mass of the
distribution as seen in fig.2.5. The covariance matrix specifies how correlated the
values X1 and X2 are as seen in fig.2.6.

(a) (b)

(c) (d)

Figure 2.5: 2D Gaussian distribution for different value of µ. (a) µ = [0 0]
(b) µ = [5 0] (c) µ = [5 5] (d) µ = [−5 − 5]
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(a) (b)

(c) (d)

Figure 2.6: 2D Gaussian distribution for different value of Σ. (a) Σ =[
1 0.4

0.4 1

]
(b) Σ =

[
3 0
0 1

]
(c) Σ =

[
1 0.9

0.9 1

]
(d) Σ =

[
1 −0.6
−0.6 1

]

We can make some interesting observation by ”fixing” the first dimension of a
Gaussian and observing the other one. Formalizing this we want to compute the
probability P (X2|X1). This probability is in fact a univariate Gaussian, which is
one of the properties that makes the normal distribution so useful.

2.2 Sampling

Given a specified Gaussian distribution we can draw samples from it. In fig.2.7
we show how we can draw samples using rejection sampling in the univariate
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case. We can bound the Gaussian with a box, where the y coordinates run from
0 to value of the Gaussian evaluated at its mean point. For the x coordinates
we can use the interval [−3σ, 3σ], which captures 99.7% of the values. We can
sample uniformly in those two defined intervals generating points [xi, yi]. If they
are below the distribution we accept the samples, if not we reject them. We can
extend this method and draw samples from higher dimensional Gaussians. In
fig.2.8 we can see random samples from a 2D Gaussian. We see from fig.2.7 that
we end up rejecting a lot of the samples. There are other more efficient ways
to sample from a normal distribution [4][16][6]. We present this method just for
completeness, as it gives an intuition of how one might go about implementing
sampling.

Figure 2.7: Drawing samples from 1D Gaussian using rejection sampling.
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Figure 2.8: Drawing samples from 2D Gaussian.

2.3 Error bars

A useful metric from statistics that we will use is standard error. We define it
in eq.2.4, where σ is the standard deviation of our random variable and N is the
number of samples that we draw.

σM =
σ
√
N

(2.4)

With standard error we can quantify uncertainty of a random variable. From
the definition we see that intuitively the smaller the variance of the random
variable and the more samples we draw, the smaller the error thus the less the
uncertainty. In fig.2.9 we show the error bars for the conditional distribution
P (X2|X1). When N = 1 we define the standard error as one standard error
which is just the standard deviation of the distribution.
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(a) (b)

Figure 2.9: Error bars in 2D Gaussian. We fix X1 = 1 and draw samples
from X2. We show the error bars for N = 1 sample and different covariance

matrices (a) Σ =

[
1 0.4

0.4 1

]
(a) Σ =

[
1 0.9

0.9 1

]



Chapter 3

Gaussian Processes

In this chapter we build up on our knowledge about Gaussian distributions in
order to define Gaussian Processes.

3.1 Alternative visualization of samples of mul-

tivariate Gaussian

In this section we present an alternative way of visualizing samples from a mul-
tivariate Gaussian distribution. We will plot the different components of X for
each sample we have. In fig.3.1 we again give an example with a 2D Gaussian.
Instead of visualizing the samples on a contour plot, we can have the indexes of
the vector X along the x axis, namely 1 and 2, and the corresponding elements
of the vector on the y axis, X1 and X2.

(a)

(b)

Figure 3.1: Alternative way of plotting a Gaussian. (a) Plotting 2D
Gaussian as a contour plot, where every sample is a point on the contour plot.
(b) Plotting only the one sample we have drawn from the Gaussian.

13
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In fig.3.2 we show more samples from the same distribution.

(a)

(b)

Figure 3.2: 10 samples from a 2D Gaussian.

1

Having defined this way of visualizing samples from a multivariate normal distri-
bution, we can now visualize samples from a distribution with more than three
dimensions. In fact we can extend this to any dimension we want. For example
let’s have the 6D Gaussian distribution with mean

µ =
[
0 0 0 0 0 0

]
(3.1)

and covariance matrix

Σ =


1 0.95 0.8 0.6 0.41 0.25

0.95 1 0.95 0.8 0.6 0.41
0.8 0.95 1 0.95 0.8 0.6
0.6 0.8 0.95 1 0.95 0.8
0.41 0.6 0.8 0.95 1 0.95
0.25 0.41 0.6 0.8 0.95 1

 (3.2)

We can again draw samples as in fig.3.3, (a). Measuring the standard deviation
at each point, we can calculate the error bars as discussed earlier.
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(a) (b)

Figure 3.3: 6D Gaussian. (a) Ten samples from the Gaussian. (b) Error bars
showing the standard deviation at each dimension.

Looking at the plot, we make two observations. We notice that the lines we
generate start to look like a nonlinear regression. They also appear to be smooth.
This suggests that there is correlation between points close to each other. We
also observe the structure of the covariance matrix we draw the samples from.
The answers to these questions comes from the way we generate the covariance
matrix, using a specific kernel.

3.2 Kernel function

First we will give a definition of a kernel function. A kernel function specifies how
to construct a covariance matrix for a multivariate normal distribution. In fact
the covariance matrix from eq.3.2 was not random, but generated from a specific
kernel. The kernel that we use is ’squared exponential’ - a decreasing function of
the distance between the two points as seen in eq.3.3.

k(xn, xn′) = σ2
fexp

(
− 1

2l2
(xn − xn′)2

)
(3.3)

Here xn is the index of the particular dimensional of our Gaussian, in our case 1
through 6. σf is the vertical lengthscale, l is the horizontal lengthscale. Using a
kernel, we can generate a covariance matrix from eq.3.4.

cov(yn, yn′) = k(xn, xn′) + σ2
vδnn′ (3.4)

yn and yn′ specify row and column of the element of the covariance matrix, we
are currently generating the value for. σv specifies the noise in our predictions
and δnn′ is the direct delta function.

This framework allows us to generate a covariance matrix with any size. We can
also extend our mean vector as much as we like, since so far we’ve defined it as a
zero vector. In fig.3.4 we show 4 samples drawn from 40D Gaussian.
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(a) (b)

Figure 3.4: Samples from 40D Gaussian using ’squared exponential’ ker-
nel function. σv = 0, l = 1, σf = 1. (a) Four samples from the Gaussian. (b)
Error bars showing the standard deviation at each dimension.

In sec.3.4 we go in more details on the effect the hyperparameters have on the
sample functions we generate.

3.3 Definition

In this section we can finally formally define a Gaussian Processes (GP).

Definition 3.3.1 A Gaussian processes is a collection of random variables with
the property that the joint distribution of any finite subset is a Gaussian.

Definition 3.3.2 A Gaussian processes is fully specified by a mean and a covari-
ance function.

In order to give a better intuition about GP we examine fig.3.5. So far we’ve been
thinking about the visualizations of samples of multivariate normal distribution as
in fig.3.5, (a). We will rename the axis N → X and XN → Y as in fig.3.5, (b) and
think about each sample from the multivariate normal distribution as function
that maps x→ y. So far we were setting length of the X axis with the dimension
of multivariate normal distribution we draw samples from. However, the only
place where we use the different Xi is in eq.3.3 and eq.3.4. So far we were using
only integer numbers for the different dimensions, to calculate the correlations
between them. However we can ”relabel” the different dimensions with any float
number we want and calculate the covariance matrix correspondingly. Thus we
see in fig.3.5, (c) we draw the samples from a 40D Gaussian, but represent X only
in a interval with length 6 - from 1 to 7. So we can set an arbitrary interval for
the X axis. In other words the dimension of the Gaussian from which we draw
samples, only controls the precision with which we want to represent a function.
Moreover we don’t have to take all the Xi at the same distance from one another,
as seen in fig.3.5, (d). Finally, just for clarity, we will just show the different
functions and use different colors as seen in fig.3.5, (e) and (f).
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Thus a GP is a framework for sampling functions with certain properties given
mean and covariance function as seen in eq.3.5.

f(x) ∼ GP(m(x), k(x, x′)) (3.5)

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Defining a GP as a method for sampling functions. (a)
Plotting a samples from a high dimensional Gaussian as defined in fig.3.1 (b)
Renaming the two axis (c) We can have a arbitrary interval for X axis (d) Points
taken from this function does not have to be equally spaced (e) Showing just the
sampled functions (f) The sampled functions with different colors



Chapter 3. Gaussian Processes 18

3.4 Kernel hyperparameters

In this section we explore the effect of hyperparameters of the squared exponential
kernel defined in eq.3.3 and eq.3.4. The kernel function has three hyperparameters
- noise σv, vertical lengthscale σf and horizontal lengthscale l. Their effects can
be seen in fig.3.6, 3.7 and 3.8. The noise hyperparameter σv allows us to model
noise in our data. The vertical lengthscale σf is a scaling factor determining the
interval Y of our generated functions. The horizontal lengthscale l controls how
smooth the generated functions are. The hyperparameters are set based on our
knowledge and assumptions before we observe any data.

(a) (b)

(c) (d)

Figure 3.6: Effect of noise hyperparameter σv. We fix σf = 1 and l = 1
and vary σv. (a) σv = 0 (b) σv = 0.01 (c) σv = 0.05 (d) σv = 0.1



Chapter 3. Gaussian Processes 19

(a) (b)

(c) (d)

Figure 3.7: Effect of noise hyperparameter l. We fix σv = 0 and σv = 1 and
vary l. (a) l = 1 (b) l = 3 (c) l = 5 (d) l = 0.5
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(a) (b)

(c) (d)

Figure 3.8: Effect of noise hyperparameter σf . We fix σv = 0 and l = 1
and vary σf . (a) σf = 1 (b) σf = 2 (c) σf = 3 (d) σf = 0.5

3.5 Two-dimensional input space

Thinking about GP as a way of sampling functions as defined in eq.3.5, we can
extend this beyond the linear case. As seen in eq.3.6 and eq.3.7, the only modi-
fication we have to do to our kernel function is modify the way we calculate the
correlation between the different dimensions of the Gaussian to include more di-
mensions. We can intuitively see how this works in fig.3.9. Here the samples from
our GP are smooth surfaces similar to the smooth functions we were generting in
sec.3.4.

cov(yn, yn′) = k(xn, xn′) + σ2
vδnn′ (3.6)

k(xn, xn′) = σ2
fexp

(
−

D∑
d=1

1

2l2
(xdn − xdn′)2

)
(3.7)
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(a) (b) (c)

Figure 3.9: Sample 2D functions (surfaces) generated from GP with
squared exponential kernel



Chapter 4

Gaussian Processes for nonlinear
regression

In previous chapters we defined GP and how they can used to generate functions
with certain properties. In this chapter we introduce data and investigate how
we can use GP in order to model the data in the context of nonlinear regression.

4.1 Bayesian Inference

Bayes’ theorem is one of the fundamental theorems in probability theory. The
theorem has the form as in eq.4.1.

π(θ|x) =
f(x|θ)p(θ)
f(x)

(4.1)

The terms of the theorem as usually referred as in eq.4.2.

Posterior =
Likelihood ∗ Prior

Evidence
(4.2)

The term f(x)−1 does not depend on θ, it is just a normalization constant. Thus
we can calculate the posterior distribution up to proportionality. The form of the
Bayes’ Theorem, as in eq.4.3, is the basis for Bayesian Inference.

π(θ|x) ∝ f(x|θ)p(θ) (4.3)

An important concept in Bayesian inference is conjugate priors. Conjugate prior
allows us to calculate the posterior in closed-form. Gaussian distribution has the
nice property that it is self-conjugate - if we have Gaussian prior and likelihood,
this ensures that our posterior will also be a Gaussian.

22
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Definition 4.1.1 If the posterior distribution π(θ|x) has the same form as the
prior distribution p(θ), then the prior p(θ) is called conjugate prior for the likeli-
hood function f(x|θ).

We define our prior distribution p(θ) as:

p(θ) =
1

√
2πσf

e
−

(x−µf )
2

2σ2
f (4.4)

and likelihood f(x|θ) as:

f(x|θ) =
1

√
2πσg

e
− (x−µg)2

2σ2g (4.5)

Then the posterior distribution is again drawn from a normal distribution, with
the form π(θ|x) ∼ N(µfg, σfg), where

σfg =

√
σ2
fσ

2
g

σ2
f + σ2

g

(4.6)

and

µfg =
µfσ

2
g + µgσ

2
f

σ2
f + σ2

g

(4.7)

Full derivation can be found in [14]. In fig.4.1 we show Bayesian inference with
three data points.

Figure 4.1: Bayesian inference.



Chapter 4. Gaussian Processes for nonlinear regression 24

4.2 Inference in Gaussian Processes

In the previous section we defined what Bayesian inference is and how we can
apply it using Gaussian distributions. In this section we describe how we can
use GP to do inference from data. In eq.3.5 we defined GP as a method for
sampling functions. Each of these functions is described by a set of points, which
we get from taking one sample from a high dimensional Gaussian distribution.
The coordinates of the different dimensions of the sample define the function. We
can represent our prior functions before we observe any data as in eq.4.8.

f∗ ∼ N(0,Σ(X∗, X∗)) (4.8)

Now we introduce a set of data points {xn, yn}Nn=1. In a vector form we can
represent them as {X, f}. We can use X∗ from our prior and X from our data
to calculate covariance matrices using the kernel from eq.3.4. Next we can define
the joint Gaussian distribution as in eq.4.9.

[
f
f∗

]
∼ N

(
0,

[
Σ(X,X) Σ(X,X∗)
Σ(X∗, X) Σ(X∗, X∗)

])
(4.9)

Finally, we can calculate the conditional distribution of functions, given our prior
and data in eq.4.10. Since we are conditioning two Gaussian distributions, we
know that the posterior will also be a Gaussian distribution.

f∗|X∗, X, f ∼ N(µf∗ ,Σf∗) (4.10)

Calculating the mean vector µf∗ and covariance matrix Σf∗ is derived in great
details in [2] (sec. 2.3.1). We can see the results in eq.4.11, 4.12.

µf∗ = Σ(X∗, X)Σ(X,X)−1f (4.11)

Σf∗ = Σ(X∗, X∗)− Σ(X∗, X)Σ(X,X)−1Σ(X,X∗) (4.12)

Finally we can implement a simple example of nonlinear regression with GP as
in fig.4.2.
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(a) (b)

(c) (d)

Figure 4.2: Inference in GP. (a) Prior (b) Data (c) Posterior (d) Error bars

4.3 Benefits and comparison with other meth-

ods

Doing regression with GP has a couple of useful properties. First of all unlike
neural nets for example, GP are a non-parametric model. We don’t have to do
apply many iteration of a learning algorithm like backpropagation. Learning a
model consists of only setting the hyperparameters and calculating a conditional
probability distribution of two Gaussians. Moreover GP provide a framework for
quantifying uncertainty. This proves to be of great importance in different fields
where we can only make limited number of noisy measurements. In this report we
discuss only squared exponential kernel. However there are a wide variety of other
kernels, which can generate and model different types of functions. In fact we
can also combine different functions to compose a kernel, the only requirement
being that the kernel has to generate positive definite covariance matrix [17].
We can use GP for classification similarly to neural network by applying sigmoid
nonlinearity [12]. An interesting theoretical result is that GP can simulate shallow
neural networks with one hidden layer with infinite number of neurons [19]. This
combines with the fact that we can represent any function using a shallow neural
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network, suggests that GP are indeed a powerful model[3]. They’ve been some
recent advances to scale GP similar to neural networks by introducing hierarchical
structure to improve learning [5].



Chapter 5

Predictive modeling of
spatiotemporal phonomena

In this chapter we examine the problems of active sensing and modeling spa-
tiotemporal phenomena and how they can be solved using GP . We start by giv-
ing definitions and motivation for the topics, continue by developing a model for
the ocean temperature in the Pacific Ocean and finish the chapter by discussing
other applications and possible extensions.

5.1 Definitions and review

First we define spatiotemporal phenomena and active sensing. The two problems
are often studied together, as the complexity of modeling spatiotemporal phe-
nomena and inability to have full observations over it, leads to necessity of using
active sensing.

Definition 5.1.1 Spatiotemporal phenomena is an event relating to, or existing
in both space and time.

Definition 5.1.2 Active sensing, or active information gathering, is collecting
the most useful information about a problem and then using the gathered infor-
mation to do inference with the goal of maximizing the accuracy of the inference
while minimizing the quantity of information gathered.

There have been a significant work in the field. Efficient monitoring of spa-
tiotemporal phenomena and their dynamics is discussed in [18]. The phenomena
discussed is water quality monitoring in rivers and lakes. The goal specified is
to maximize the information collected, while taking into account the limitation
of the sensor devices and robots they are using. Hence Gaussian Processes are
a good choice since they can quantify the amount of information they have col-
lected. Moreover they can pick locations they want to go next, based on the
places with higher uncertainty. The paper suggests possible extensions for path
planning for multiple robots, instead of a single one.

27
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In modeling spatiotemporal a common problem seems to be few incorrect ex-
treme measurements leading to inaccurate model [11]. GP tend to a reproduced
field around a those few extreme measurements, while predictions being low, in
desirable location. However by using log-measurements, mitigates the issue as it
removes extremity and remove skewness.

Another key idea in conducting inference with GP is lazy evaluation [7]. We
continuously pick a place with high uncertainty - conduct measurements - make
inference and update our model - pick a place with high uncertainty - etc. Usu-
ally correlation decreases exponentially as the distance between points increases.
However often variables apart from each other are dependent. By exploiting lo-
cality in kernel functions we can achieve significant speed up of the algorithm [7].
GP also prove to be effective in modeling spatiotemporal phenomena over long
period of time [9].

5.2 Modeling ocean temperature using Gaus-

sian Processes

In this section we conduct an experiment to demostrate GP in practice. We use El
Nino Data Set [10]. The dataset consists of 178 080 meteorological measurements
across the Pacific - air temperature, relative humidity, surface winds, sea surface
temperature, etc. The measurements were made from 25 places across the Pacific
Ocean over the span of 5 years. For the purpose of the report, we will try to model
the air temperature for a fixed location (156 longitude, -6 latitude) as in fig.5.1.

Figure 5.1: Air temperature for 156 longitude, -6 latitude (Pacific
Ocean) from Jan 1994 til Jan 1998 [10].
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We can set some priors from information outside of the data source we use. In
this problem we set the mean function µ to be constant 27. We set the noise
σv = 0.1, the horizontal lengthscale l = 100 days, vertical lengthscale sigmaf = 1
and use 40D Gaussian to represent our functions. We also take limited number of
measurements. From the 1480 single measurements we have we take only 30 and
conduct inference with them. The results can be seen in fig.5.2. We can already
see that even though we take only 30 points we have already have a reasonable
fit for the data.

(a) (b)

(c) (d)

Figure 5.2: GP for modeling some of the data from the El Nino Data
Set [10]. Taking 30 equally spaced data points, σv = 0.1, l = 100, sigmaf = 1,
samples from a 40D Gaussian (a) Samples from the prior (b) Error bars for the
prior (c) Samples from the posterior (d) Error bars bars for the posterior

Next we increase to include 100 measurements and increase the dimension of the
Gaussian we sample our functions from to 200D. The results can be seen in
fig.5.3. Finally just for clarity we can plot the error bars we generate on the
actual data as in fig.5.4.
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(a) (b)

(c) (d)

Figure 5.3: GP for modeling some of the data from the El Nino Data Set
[10]. Taking 100 equally spaced data points, σv = 0.1, l = 100, sigmaf = 1,
samples from a 200D Gaussian (a) Samples from the prior (b) Error bars for the
prior (c) Samples from the posterior (d) Error bars bars for the posterior

Figure 5.4: Final results.
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5.3 Other Applications

We already presented some applications in sec.5.1 while discussing useful proper-
ties and extensions of GP . Other successful examples include modeling plankton
densities and road traffic. An interesting example is the prediction of CO2 con-
centration in [17]. Measurements continued to be collected 5 years after the book
was published and the model described them very well [8]. Other applications
include balancing of objects [13] and information gathering for classification [1].

(a)
(b)

(c) (d)

Figure 5.5: GP in different applications. (a) Modeling plankton density
and urban road network [15] (b) CO2 concentration [17] and [8] (c) Balancing an
inverted poles from a Apollo robot [13] (d) Decision making [1]



Chapter 6

Summary

In this report we presented some of the fundamental theory that make Gaussian
Processes (GP) a powerful machine learning tool. We focus on using GP for
nonlinear regression and discuss possible applications in classification and rein-
forcement learning. We briefly discuss some interesting theory and connections
between GP and neural nets. Finally we examine the problem of active sensing
and predictive modeling of spatiotemporal phenomena. The report implements
an example model of nonlinear regression for the air temperature above the Pa-
cific Ocean. The code base for this report as well as accompanying presentation
can be found on https://github.com/masenov/GP_Intro
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